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Abstract
Using the second Hopf map, we perform the reduction of the eight-dimensional
(pseudo)spherical (Higgs)oscillator to a five-dimensional system interacting
with a Yang monopole. Then, using a standard trick, we obtain, from the
latter system, the pseudospherical and spherical generalizations of the Yang–
Coulomb system (the five-dimensional analog of MICZ-Kepler system). We
present the whole set of its constants of motions, including the hidden symmetry
generators given by the analog of the Runge–Lenz vector. In the same way,
starting from the eight-dimensional anisotropic inharmonic Higgs oscillator, we
construct the integrable (pseudo)spherical generalization of the Yang–Coulomb
system with the Stark term.

PACS numbers: 03.65.−w, 02.30.Ik, 14.80.Hv

1. Introduction

It is well-known that in some cases the hidden symmetries of the oscillator and the Coulomb
system can be related. More precisely, both in the classical and quantum cases, the
transformation r = R2 converts the (p + 1)−dimensional radial Coulomb problem to a
2p−dimensional radial oscillator (r and R denote the radial coordinates of Coulomb and
oscillator systems, respectively). The angular parts of these systems, which are (2p − 1)- and
p-dimensional spheres, can be related to each other in the distinguished cases p = 1, 2, 4, 8,
due to the existence of the Hopf maps S2p−1/Sp = Sp−1 for p = 1, 2, 4, 8 (see the review [1]
and refs therein). Hence, in these cases, one can establish a complete correspondence between
the Coulomb and the oscillator systems. For the first three cases this correspondence has been
established many years ago. The corresponding transformations are known in the literature as
Bohlin (or Lévi-Cività) [2], Kustaanheimo–Stiefel [3] and Hurwitz [4] transformations. These
transformations imply the reduction of the oscillator system by an action of the group Z2, U(1),
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SU(2) and yield, indeed, to systems which are more general than the Coulomb one; these
systems inherit the Coulomb symmetry but are specified by the presence of a monopole. In the
case of the Z2 group (p = 1) it is the two-dimensional Coulomb problem with spin 1/2 anyon
(magnetic flux) [5]; in the case of the U(1) group (p = 2) it is the so-called MICZ-Kepler
system, the generalization of the three-dimensional Coulomb system in the presence of a
Dirac monopole [6]; in the case of the SU(2) group (p = 4) it is the so-called Yang–Coulomb
(or SU(2)-Kepler) system, the generalization of the five-dimensional Coulomb system in the
presence of a Yang monopole [7].

On the other hand, the oscillator and Coulomb systems admit generalizations to a d-
dimensional sphere and a two-sheet hyperboloid (pseudosphere) with a radius R0 given by the
potentials [8, 9]

Vosc = ω2

2

x2

x2
d+1

, VC = −γ xd+1

|x| , (1.1)

where x, xd+1 are the (pseudo)Euclidean coordinates of the ambient space IRd+1(IRd.1):
εx2 + x2

d+1 = R2
0, ε = ±1. Here ε = +1 corresponds to the sphere and ε = −1 corresponds

to the pseudosphere. These systems possess nonlinear hidden symmetries providing them
with properties similar to those of the conventional oscillator and Coulomb systems. Detailed
considerations of these systems can be found in [10] and refs therein. The relation between
these systems has been established in [11] for the cases p = 1, 2 only, though it was clear from
the considerations there, that it could be straightforwardly extended to the higher dimensional
case p = 4. Let us note that both the oscillators on the sphere and pseudosphere result, upon the
mentioned reduction, in Coulomb-like systems on the pseudosphere. For example, the p = 2
case yields a system with Coulomb symmetry which can be identified with the pseudospherical
MICZ-Kepler system. Then, after an obvious ‘Wick rotation’, it can be mapped in the spherical
MICZ-Kepler system suggested in [12]. Moreover, in this way, starting from the appropriate
anisotropic inharmonic four-dimensional (pseudo)spherical Higgs oscillator, one can obtain
the integrable (pseudo)spherical generalization with the Stark term [13]. Hence, the extension
of the (pseudo)spherical oscillator-Coulomb correspondence to the p = 4 case is an important
task; it should give us the integrable generalizations of the five-dimensional Yang–Coulomb
system, including the systems with the Stark term. The solution of this task is the purpose of
our paper. We will use the procedure of the Lagrangian SU(2)-reduction of eight-dimensional
system considered in our recent paper [14] in the context of supersymmetric mechanics. We
will restrict ourself to classical considerations only. The (pseudo)spherical Yang–Coulomb
system, obtained in the present paper, besides the presence of a Yang monopole, is specified
by the presence of a specific centrifugal term

�U = s2

2g(r)r2
, (1.2)

where g(r) dxμ dxμ is the conformal invariant metric on the (pseudo)sphere and s2 is the
square of the isospin of the system. Upon quantization it should be replaced by h̄2s(s + 1),
s = 0,±1/2,±1, . . . . In [17] it was demonstrated that the five-dimensional rotationally
invariant system of the Yang monopole, supplied by the addition of the above potential,
preserves the analytic form of the energy spectrum. The only change in the spectrum
of the system is the range of validity of the orbital quantum number. Its lower bound
shifts from zero to |s|. Hence, one can immediately write down the spectrum of the
(pseudo)spherical Yang–Coulomb system, taking into account general statements. But why
are we so sure that the quantum mechanical reduction of the eight-dimensional Higgs oscillator
to the (pseudo)spherical Yang–Coulomb system should lead to a system with such spectrum
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(in general, reduction and quantization are not commuting procedures)? We refer to the
second reference in [11], where the consistency of the quantum mechanical spectrum of
the eight-dimensional Higgs oscillator and pseudospherical Yang–Coulomb system has been
demonstrated. Hence, for the unperturbed quantum-mechanical systems everything works
finely. With the quantum mechanics of the (pseudo)spherical Yang–Coulomb systems with
the Stark term the situation is more complicated. In contrast with the spherically symmetric
systems, the impact of the monopole is less trivial. Even in the three-dimensional planar case,
the presence of a (Dirac) monopole essentially changes the spectrum of the MICZ-Kepler
system with the Stark term (and of its modification) obtained within perturbation theory [18].
Similar calculations for the (pseudo)spherical case yield technical complications, which we
hope to address in future studies.

The paper is arranged as follows. In the second section we present the explicit description
of the second Hopf map in terms needed for our purposes and employ it to reduce the
eight-dimensional bosonic system to a lower dimensional system with SU(2) monopole. In
the third section we apply the previous construction to the oscillator on eight-dimensional
(pseudo)sphere and get, from the reduced system, the five-dimensional (pseudo)spherical
generalization of Yang–Coulomb system. In a similar way we obtain the five-dimensional
(pseudo)spherical generalization of Yang–Coulomb system with the Stark term.

2. SU (2) reduction and the second Hopf map

For the description of the second Hopf map S7/S3 = S4 we first introduce five 8 × 8 matrices
�μ

{�μ, �ν} = 2δμν18 (2.1)

with the following relations:

�1 = τA ⊗ τ1 ⊗ τA, �2 = τA ⊗ τ2 ⊗ τA, �3 = τA ⊗ τA ⊗ 12,

�4 = τ1 ⊗ 12 ⊗ 12, �5 = τ2 ⊗ 12 ⊗ 12,
(2.2)

where

τ1 =
(

0 1
1 0

)
, τ2 =

(
1 0
0 −1

)
, τA =

(
0 1

−1 0

)
12 =

(
1 0
0 1

)
, (2.3)

where {A,B} denotes the anticommutator. For our purposes we have also to introduce three
8 × 8 antisymmetric matrices 
a:


1 = 1
2 12 ⊗ τA ⊗ τ1, 
2 = 1

2 12 ⊗ τA ⊗ τ2, 
3 = 1
2 12 ⊗ 12 ⊗ τA, (2.4)

which commute with all matrices �μ, anticommute with each other and satisfy the SU(2)

algebra relations:

[�μ,
i] = 0, {
i,
j } = −2δij 18, [
i,
j ] = εijk

k. (2.5)

Let us now have an eight-dimensional conformal flat space with metric g, parametrized by
eight coordinates uA. We also consider 5 functions xμ, which are connected with ui by the
following relations:

xμ = uT �μu, μ = 1, . . . , 5 (2.6)

where u is an eightdimensional column vector with elements uA.
One can note that the transformation

u → (λ018 + λi
i) u, λ2
0 +

∑
λ2

i = 1, i = 1, 2, 3 (2.7)

3



J. Phys. A: Math. Theor. 43 (2010) 045205 S Bellucci et al

leaves invariant the xμ quantities. Here and further, summation is understood whenever
repeated indices appear. Therefore, fibration 2.6 identifies all points that are mapped into each
other by transformation 2.7. It can be checked explicitly that

xμxμ ≡ r2 = (uAuA)2 ≡ R4. (2.8)

Thus, defining the seven-dimensional sphere in IR8 of radius R: uαūα = R2, we get a four-
dimensional sphere in IR5 with radius r = R2, i.e. we obtain the second Hopf map. Taking
into account relation 2.8 and the fact that the second relation in 2.7 defines the S3 sphere, one
can conclude that the second Hopf map is a fibration of the sphere S7 over S3:

S7/S3 = S4.

Let us parametrize the bundle S3 = S2 × S1 by the following coordinates:

z = u7 − iu8

u5 − iu6
, z̄ = u7 + iu8

u5 + iu6
, γ = arctan

u5

u6
, (2.9)

where the coordinates z, z̄ parametrize S2 = CP 1 and γ parametrizes S1.
The matrices 
i define a set of vector-fields on S3 that form the SU(2) algebra:

Ui = uA
i
AB

∂

∂uB

. (2.10)

In terms of the new coordinates these vector-fields can be written as follows:

U3 = −1

2

∂

∂γ
, U2 + iU1 = U+ = e−2ıγ

4

(
(1 + zz̄)

∂

∂z̄
+

ız

2

∂

∂γ

)
, U− = U+.

(2.11)

The one-forms dual to this set of vector-fields look as follows:

�̃3 = 2 dγ + i
z dz̄ − z̄ dz

1 + zz̄
, �̃+ = �̃2 + i�̃1 = 2

e2ıγ dz̄

1 + zz̄
(2.12)

�̃3(U3) = �̃±(U±) = 1, �̃±(U∓) = �̃±(U3) = �̃3(U±) = 0. (2.13)

We will also need another set of SU(2) Lie algebra elements parametrizing the sphere S3 and
commuting with (2.11)

V3 = 1

2

∂

∂γ
+ ı

(
z

∂

∂z
− z̄

∂

∂z̄

)
, V+ = 1

2

(
∂

∂z̄
+ z2 ∂

∂z
− ı

z

2

∂

∂γ

)
, V− = V+.

(2.14)

The one-forms dual to these vector-fields look as follows:

�3 = 2h3 dγ + ı
z̄ dz − zdz̄

1 + zz̄
, �+ = �2 + i�1 = 2ıh+ dγ + 2

dz̄

1 + zz̄
, (2.15)

�3(V3) = �±(V±) = 1, �±(V∓) = �±(V3) = �3(V±) = 0, (2.16)

here h3, h± are the Cartesian coordinates of the ambient space IR3, defining the Killing
potentials of S2

h+ = 2z

1 + z̄z
, hp+1 = 1 − z̄z

1 + z̄z
. (2.17)

It can be checked directly that the vector fields U and V commute with each other.
Precisely, this pair forms the the so(4) = s(3) × so(3) algebra of isometries of the S3 sphere.

[Vi , Vj ] = εijkVk, [Ui , Uj ] = εijkUk, [Vi , Uj ] = 0. (2.18)
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Let us consider now the particle on the eight-dimensional space equipped with the SU(2)-
invariant conformal flat metric moving. In a specific potential that depends only on the
coordinates xμ. In the next section a physical example of this Lagrangian will be considered.

L8 = gu̇Au̇A + U, (2.19)

where g and U depend on functions xμ = uT �μu only, so that they are invariant under
the action of the SU(2) group. Since we are interested in the construction of spherical
generalization of the MICZ-Kepler systems, we have chosen the conformal flat metric case.
The generalization to nondiagonal metric (e.g. IHIP2) is straightforward. Various metrics and
potentials are considered in [16].

In the new parametrization the Lagrangian of that particle has the following form:

L8 = gṙμṙμ +
gr

2
�.

iAi − gr

4
�.

i�
.
i + U, (2.20)

where

rκ = xκ√
2(r + x5)

, κ � 4 and r5 =
√

r + x5

2
.

Here and further �.
i is defined by (2.15), where the differentials are replaced by the

respective time derivatives, while

Ai = Ai
βẋβ = ηi

αβxαẋβ

r (r + x5)
, ηi

αβ = δiαδ4β − δ4αδiβ + ε4iαβ,

i = 1, 2, 3, α, β = 1, 2, 3, 4 (2.21)

ηi
bc is t’Hooft symbol.

It can be seen that Aa defines the potential of the SU(2) Yang monopole [15]. Below
we will show that after reduction by SU(2) group action this term will describe the physical
coupling of a Yang monopole to the system.

By use of the Noether constants of motion, we can decrease the dimensionality of the
system. Due to the non-Abelian nature of the SU(2) group, the system will be reduced to a
(5 + 1)-dimensional one.

For the correct reduction procedure we have to replace the initial Lagrangian by a
variationally equivalent one, extending the initial configuration space by the new variables
π , π̄ , pγ which play the role of momenta conjugated to z, z̄, γ . In other words, we will
replace the sphere S3 (parametrized by z, z̄, γ ), by its cotangent bundle T ∗S3 parametrized
by coordinates z, z̄, γ , π , π̄ , pγ . Let us define, on T ∗S3, the Poisson brackets given by the
relations

{π, z} = 1, {π̄ , z̄} = 1, {pγ , γ } = 1. (2.22)

We introduce the Hamiltonian generators Pa corresponding to the vector fields (2.14)
(replacing the derivatives in vector fields Va by corresponding momenta)

P+ = P2 − ıP1

2
= 1

2

(
π + z̄2π̄ − ız̄

2
pγ

)
, P− = P̄−, P3 = pγ

2
+ ı(zπ − z̄π̄ ). (2.23)

In the same way we introduce the Hamiltonian generators Ia corresponding to the vector fields
(2.11):

I3 = −pγ

2
, I+ = I2 − ıI1

2
= ıpγ z + 2π̄ (1 + zz̄)

4
e−2ıγ , I− = I +. (2.24)

These quantities define, with respect to the Poisson brackets (2.22), the so(4) =
so(3) × so(3) algebra

{Pi, Pj } = εijkPk, {Ii, Ij } = εijkIk, {Ii, Pj } = 0. (2.25)

5
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The functions Pi, Ii obey the following equality, which is important for our considerations:

IiIi = PiPi. (2.26)

We replace now the initial Lagrangian (2.20) by the following variationally equivalent one:

Lint = (P+�+ + P−�− + P3�3) +
(
πμ − PiA

i
μ

)
ẋμ − PiPi

gr
− r

πμπμ

g
+ U(x). (2.27)

Here we used the identity

−gr

4
AiAi + gṙμṙμ = g

ẋμẋμ

4r
.

Such kind of representation of a variationally equivalent Lagrangian is motivated by the
following reason. Let the 2n-dimensional Lagrangian have the form

L = fr(y)ẏr − H(y), r = 1 . . . 2n, (2.28)

where H(y) and fμ(y) are some functions of the variable y. The Euler–Lagrange equations
for such Lagrangian look as

ẏr = ωrs ∂H

∂ys
, (2.29)

where ωrsωsq = δr
q, ωrq = ∂rfq − ∂qfr . It is easy to see that ωrq defines Poisson Brackets

{yr, ys} = ωrs . Hence, ωrq is the symplectic structure of the system and H is the corresponding
Hamiltonian. In the invariant language we represent the Lagrangian as follows:

L = ω(1)(dy) − H(y), (2.30)

where ω(1) is one-form which locally can be written as in (2.28), and the symplectic structure
looks as follows:

ω(2) = dω(1). (2.31)

We will use this fact in the next section.
The isometries of this, new, Lagrangian corresponding to (2.11) are defined by the vector

fields

Ũi ≡ {Ii, }, (2.32)

where Ii are given by (2.24) and the Poisson brackets are given by (2.22). Indeed, Ii are
precisely the Noether constants of motion of the new Lagrangian (2.27) corresponding to
(2.32). To see this we simply should take into account the following equality:

P+�+ + P−�− + P3�3 = pγ γ̇ + πż + π̄ ˙̄z. (2.33)

Let us perform now the reduction by the action of the SU(2) group given by the vector
fields (2.32). For this purpose we have to fix the Noether constants of motion (2.24):

Ii = si = const, sisi ≡ s2.

Since Ii are constants of motion independent of the rμ coordinates we can perform an orthogonal
rotation, so that only the third component of this set, I3, will be different from zero. Equating
I+ and I− with zero we obtain

−I3 = pγ

2
= s, π̄ = −sı

z

1 + zz̄
, π = sı

z̄

1 + zz̄
. (2.34)

Hence,

P+ = −s
ız

1 + zz̄
, P− = s

ız̄

1 + zz̄
, P3 = s

1 − zz̄

1 + zz̄
. (2.35)

6
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Thus, Pa become precisely the Killing potentials of the S2 sphere! It is not an occasional
coincidence, indeed.

Taking in mind the equality (2.33) we conclude that the third term in (2.27) can be ignored
because it is a full time derivative. Also, taking into account (2.26) and denoting g̃ = g/2r ,
one can rewrite the Lagrangian (variationally equivalent) as follows:

Lred
int = (

πμ − sAi
μhi

)
ẋμ − ıs

z̄ż − z ˙̄z

1 + zz̄
− πμπμ

2g̃
− s2

2g̃r
− U(x), μ = 1, . . . , 5. (2.36)

According to the definition, the reduced Lagrangian can be obtained after performing a
variation procedure in terms of the variables πμ. The second term in this reduced Lagrangian
is the one-form defining the symplectic (and Kähler) structure on S2, in agreement with the
above observation that Pa results in the Killing potentials of S2.

Thus, the Noether constants of motion do not allow us to exclude the z, z̄ variables.
However, their time derivatives appear in the Lagrangian in a linear way only, defining the
internal degrees of freedom of the five-dimensional isospin particle interacting with the Yang
monopole. As a consequence, the dimensionality of the phase space of the reduced system
is 2 · 5 + 2 = 12. Only in the particular case s = 0, corresponding to the absence of Yang
monopole, we arrive at a five-dimensional system. Hence, locally, the Lagrangian of the
system can be formulated in the six-dimensional space. We will use this fact in the next
section.

3. Higgs oscillator and (pseudo)spherical Yang–Coulomb system

Let us apply the above construction to the Higgs oscillator on the eight-dimensional sphere
and pseudosphere and obtain, for the reduced system, the (pseudo)spherical generalization of
the Yang–Coulomb system, in the spirit of [11].

For this purpose we introduce the conformal flat coordinates of d-dimensional
(pseudo)sphere, which are precisely the stereographic coordinates. These coordinates are
related to the Cartesian coordinates of the ambient (d + 1)-dimensional space as follows (here
and in the following we assume the unit radius of the sphere and pseudosphere):

xA = 2uA

1 + εu2
, xd+1 = 1 − εu2

1 + εu2
, A = 1, . . . d, (3.1)

where u2 = uT u. Here xA, xd+1 are the (pseudo)Euclidean coordinates of the ambient space
IRd+1(IRd.1): εx2

A + x2
d+1 = 1, ε = ±1. The ε = +1 corresponds to the sphere and ε = −1

corresponds to the pseudosphere.
In these coordinates the metric takes the conformally flat form

ds2 = 4 duA duA

(1 + εu2)2
, (3.2)

while the potentials of the Higgs oscillator and of the Schröedinger–Kepler system (1.1) read

Vosc = 2ω2u2

(1 − εu2)2
, VC = −γ

1 − εu2

2|u| . (3.3)

Hence, the SU(2)-reduction of the the Higgs oscillator on the (pseudo)sphere to a 5D
system leads to the following Lagrangian (compare with 2.36):

Lred
osc = Lred = (

πμ − sAi
μhi

)
ẋμ − ıs

z̄ż − z ˙̄z

1 + zz̄
− (1 + εr)2

4
r

(
πμπμ

2
+

s2

2r2

)
− 2ω2r

(1 − εr)2
.

(3.4)

7
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The one-form corresponding to this Lagrangian has the following form:

ω(1) = πμ dxμ − sAi
μhi dxμ + ıs

(
z̄ dz − z dz̄

1 + zz̄

)
, (3.5)

and the inverse matrix of corresponding symplectic structure ω(2) = dω(1) defines the Poisson
brackets

{πμ, πν} = s
(
∂μAi

ν − ∂νA
i
μ − εijkA

j
μAk

ν

)
hi ≡ sF i

μνhi, {z, z̄} = ı

2s
(1 + zz̄)2,

{hi, hj } = 1

s
εijkhk, {πμ, xν} = δμν.

(3.6)

The Hamiltonian of the reduced system is given by the expression

Hosc
red = (1 + εr)2

4
r

(
πμπμ

2
+

s2

2r2

)
+

2ω2r

(1 − εr)2
. (3.7)

On the other hand, the Higgs oscillator has a number or symmetries: besides the rotational
so(8) symmetries, defining the Noether constants of motion, it possesses constants of motion
which are quadratic in momenta. We are interested in their SU(2) invariant subset given by
the generators

Jμν = PT [�μ, �ν]u

2
(3.8)

and

A = J T �μJ

2
+ 2

ω2uT �μu

(1 − εu2)2
, (3.9)

where JA = (1− εu2)PA + 2ε(uP)uA and PA is the corresponding momenta of the coordinate
uA.

Reducing the generators of rotations to the 5D system, following the general procedure
described in the previous section, we get

Jμν = xμπν − xνπμ + 2r2F i
μνhi. (3.10)

In order to find the expressions for the hidden symmetry generators we exclude the subset of
the generators of rotations that leaves invariant the coordinate xμ:

J μ
αβ = εμαβνλJνλ, α, β = 1 . . . 4, μ, ν, λ = 1 . . . 5. (3.11)

Now, we can write the implicit expression for Aμ in the following form:

Aμ = JμνTν

2
+

qμ

4
(1 + εr)2

(
πμπμ +

s2

r2

)
+

2ω2qμ

(1 − εr)2
+

ε

2
εαβγ δJ μ

αβJ
μ
γ δ, (3.12)

where Tμ = (1 + q2)pμ − 2(qp)qμ- denote transition operators on the pseudosphere. Since
the last terms are expressed through the already mentioned motion integrals, we can ignore
them.

Following [11], we can now transform the reduced Higgs oscillator to a Kepler-like
system. For this purpose we should fix the energy surface Hred

osc = E ≡ γ /2 and multiply by
(1 − εr)2/r , to get

(
Hred

osc − Ered
osc

) (1 − εr)2

r
= 0 ≡ HMICZ − EMICZ, EMICZ = −εγ − 2ω2 (3.13)

HMICZ =
(
1 − r2

)2

4

1

2

(
πμπμ +

s2

r2

)
+ γ

1 + r2

2r
. (3.14)

8
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For any motion integral I we have

{HMICZ, I} =
{(

H red
osc − Ered

osc

) (1 − εr)2

r
, I

}∣∣∣∣
H red

osc =Ered
osc

= 0. (3.15)

Hence, the new Hamiltonian has the same number of motion integrals and therefore preserves
the integrability of the initial system. After fixing the energy surface, the quantities Aμ

transform, respectively, in the Runge–Lenz vector of the constructed SU(2)-Kepler (or Yang–
Coulomb) system on pseudosphere

Aμ = JμνTν

2
+ γ

qμ

r
. (3.16)

Thus, we constructed the five-dimensional pseudospherical generalization of the MICZ-
Kepler system, i.e. the pseudospherical Yang–Coulomb system, and found its constants of
motion. It is not difficult to find a spherical analog of this system. Performing the Wick
rotation, we obtain the spherical Yang–Coulomb system. It will be defined with the same
Poisson brackets as before by the Hamiltonian

H(sph)

MICZ = (1 + r2)2

4

1

2

(
πμπμ +

s2

r2

)
+ γ

1 − r2

2r
, (3.17)

and by the motion integrals Aμ, where the quantities Tμ are replaced by Tμ = (1 − q2)pμ +
2(qp)qμ.

3.1. The anisotropic inharmonic oscillator and the Yang–Coulomb–Stark system

The oscillator described in the previous section can be extended by adding anisotropic and
inharmonic parts [13].

LAIOSC = 4

(1 + εu2)2

u̇i u̇i

2
− 2ω2u2

(1 − εu2)2
− 2�ω2u�5u

(1 − εu2)2
− 4εel

(1 − (u2)2)2

1 + (u2)2

(1 − εu2)2
u2(u�5u).

(3.18)

Since the additional terms in this Lagrangian do not preserve the spherical symmetry of the
previous system, only a part of the integrals of motion will be generalized. So, instead of
N = 5(5 − 1)/2 = 10 motion integrals corresponding to the rotation symmetry Jμν , we have
only N ′ = 4(4 − 1)/2 = 6 ones, J 5

αβ , defined in (3.11). Only one component of the generator
of hidden symmetry is generalized. In the Hamiltonian approach it has the following form:

A5 = J�5J

2
+ 2

ω2u�5u

(1 − εūu)2
+ 2

�ω2u2

(1 + εūu)2
+ 4εel

(
(u2)2

(1 − (u2)2)2
+

(u�5u)2

(1 − εu2)4

)
. (3.19)

It is obvious that the expression for this quantity in the Lagrangian approach can be obtained
just by replacing the momenta by the corresponding time derivative divided by (1 + εu2)2. In
the same way as we obtained the MICZ-Kepler system in the previous section, we get now

HMICZ = (1 − r2)2

4

1

2

(
πμπμ +

s2

r2

)
+ γ

1 + r2

2r
+ 2�ω2

(
1 − εr

1 + εr

)2
x5

r
+ 2εel

1 + r2

1 − r2

x5

1 − r2

(3.20)

A5 = J5νTν

2
+ γ

x5

r
+ 2

�ω2

(1 + εr)2

r2 − x2
5

r
+ 2εel

r2 − x2
5

(1 − r2)2
. (3.21)
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The fourth term in the Hamiltonian (3.20) in the limit of flat space yields a homogeneous
electric field with strength εel . Hence, we can consider it as a generalization of the Stark term
in the case of a (pseudo)-spherical space. The third term is just the cos θ potential.

As in the previous section, the transition to the sphere can be realized by performing a
Wick rotation. All terms in (3.20) result in real expressions, except the third one. However,
one can note that we can consider the real and imaginary parts of the Hamitonian separately.
Indeed, let the Hamiltonian H and a motion integral I have the following form:

H = KH + U + iV, I = KI + P + iQ,

where U,V, P,Q are the real functions of coordinates and KH and KI are the kinetic terms
of Hamiltonian and motion integral, respectively. The condition {H, I} = 0 leads us to two
equalities:

{HRe, IRe} = 0, {HIm, IIm} = 0,

where HRe = KH + U, IRe = KI + P and HIm = KH + V, IIm = KI + Q. This still will not
lead us to a new system. After separating the expression, we will find that its imaginary part
looks exactly like the Stark term and therefore can be ignored. Explicitly we find

Hsph
MICZ = (1 + r2)2

4

1

2

(
πμπμ +

s2

r2

)
+ γ

1 + r2

2r

+ 2 Re�ω2

(
1 − ıεr

1 + ıεr

)2
x5

r
+ 2εel

1 − r2

1 + r2

x5

1 − r2
. (3.22)

4. Conclusion and discussion

In this paper we applied the SU(2) reduction procedure to the Higgs oscillator on the eight-
dimensional pseudosphere and sphere, and transforming the energy level of the reduced system,
we obtained the Yang–Coulomb systems on the five-dimensional sphere and pseudosphere. We
recall that the Yang–Coulomb system is the generalization of the five-dimensional Coulomb
system specified by the presence of SU(2) Yang monopole, which inherits the symmetries
of the five-dimensional Coulomb system. Similarly, the constructed (pseudo)spherical
Yang–Coulomb system inherits all the symmetries of the five-dimensional (pseudo)spherical
Coulomb system. We also applied this procedure to the anisotropic inharmonic Higgs oscillator
[13] and obtained, in this way, the integrable (pseudo)spherical generalization of the Yang–
Coulomb system with the Stark term. While the spectrum of the previous system can be easily
obtained from the general construction [17], the spectrum (even perturbative) of the latter one
needs to be constructed. Even for the planar case it is unknown up to now. We are planning
to investigate it in forthcoming studies.

There are related problems that definitely need to be studied. A few years ago the
analog of oscillator on complex projective space CPN has been suggested, which respected the
inclusion of a constant magnetic field [19]. It was found that in the CP2 case this oscillator
can be reduced to the (three-dimensional) MICZ-Kepler system on (pseudo)sphere. It is
interesting to clarify whether the oscillator on CP 4 results, upon SU(2) reduction, into the
(pseudo)spherical Yang–Coulomb system. Also, in complete similarity to CPN, one can define
the oscillator on the quaternionic projective space HPN respecting the inclusion of the instanton
field [20]. One can expect that the SU(2)reduction of such an oscillator on HP2 would also
yield a (pseudo)spherical Yang–Coulomb system. Both these statements should be carefully
checked.
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